Showing posts with label Gene Editing. Show all posts
Showing posts with label Gene Editing. Show all posts

Wednesday, 16 August 2017

Gene Editing Transforms Research Similar to Cut and Paste Tool

Gene Editing

Latest gene editing research makes manipulating genes as easy as the cut-and-paste job

Gene Editing has always been dream of a number of the scientists and researchers but the real application of it was never such successful. The advancement made in the bio medical technology in the last decade and on-going research in the gene editing methodologies and techniques had given a ray of new hope to the researchers. Scientists have been altering genes for quite some time and it has been widely used in the field of agriculture and pharmaceuticals. However this is the first time that the researchers have been successful in performing gene editing with human embryo.
 

Better, precise and influential than ever before

 
The latest will be better and more precise to work with thereby allowing scientists to later the DNA of the living cells ranging from the plants, animals to humans. In simple word the new age technology will be just the cut-and-paste tool used in the modern programs.

Gene editing isn’t very fancy or dreadful area of the bio medical technology rather it is a fun, exciting and optimistic field of work. Herein scientists devote their time towards finding and fixing the defective genes through genetic therapies or gene editing methods. The latest tool called CRISPR-Cas9 brought a boom in the research as it got adopted in the laboratories across the globe quite faster than expected. Using this tool is extremely simple and requires minimal training but paves the way for the manipulation of multiple genes at the same time with higher success rate.

 

Overcoming the problems & issues

 
The major issue or problem associated with the gene editing is that it requires highest level of precision to bring desirable results. A minor mistake can lead to grave mistakes like accidently cutting the DNA. Researchers also make use of out-of-body treatments in order to ensure that they solve one problem but don’t end up in sparking another. Manipulation of genes in plants and animals using bio medical technology is not seen as the right thing to do by many and when it comes to human experiments then it becomes a matter of medical ethics.

Researchers and scientists wishes to do away with the defective genes in the human body by altering the genes in sperms, embryos and eggs and helps in spreading the changes in the future generations. This whole process is known as ‘germline engineering’ but a number of people believe that this is ethically not the right approach as we are taking the away the right to consent from our future generation by manipulating the genes. Secondly if any kind of long term negative effects are associated then it will come in foreground in the initial years and we will be designed corrupt genes unknowingly.

Embroiled in the ethics controversy stemming from the gene editing using bio medical technology, a number of nations have banned such researches. Like Europe doesn’t allow any kind of germline research when comes to human testing while Britain at most only allows scientists to carry out lab research.

Friday, 12 May 2017

New Model Could Speed Up Colon Cancer Research

MIT

Colon cancer buster

Gene editing science has been an area of growth for genetic engineers and researchers across the globe. With progressing research studies, newer treatment options are being devised and successfully delivered. One such research conducted by MIT researchers have used new gene-editing systems to generate colon tumors, resembling human tumors. A new approach to a pre-existing method in genetic sciences. This paves the path for further investigation into knowledge about disease progression.

Metastases and detection:

The highest cause of death due to colon cancer is metastases, which is difficult to detect. The disease progression is so high, that fatality is hard to control even after various treatment procedures. A recent study by the director of Koch Institute, Tyler Jacks, uses similar CRISPR- based technology to build mouse models of the disease, revolutionizing research in the field of oncology.

Various approaches have been used for modeling cancer, one of them being the usage of cancer cell lines in lab dishes. This poses a lot of limitations. Another method used is mutations, which is then genetically engineered in the mice.

Recent studies involving CRISPR, which consists of DNA- cutting enzyme Cas9 and short RNA guide strands, which specialize in targeting specific genome sequences. Using the same method scientists can make targeted mutations, by either removing or adding genes. The genes for Cas9 are packaged into lentiviruses, which are then injected into target organs of the mice, transferred by colonoscopy.

What follows?

Gene editing makes this procedure possible. By virtue of which, after establishment of the tumor, mutations can be added or deleted, making the study process more complicated and informative. The information includes the aspects of metastases, initiation and progression of the tumor from liver to various parts of the body. This also helps in studying the pattern of metastases which again is peculiar in human colon.

The MIT team delivered organoids with a mutated form of the APC gene, which when established, were introduced in a mutated form of KRAS, commonly found in colon and many other cancers. These new approaches have cut short research time and has sped up the process of gene editing.

Implications:

Gene editing, this newest form of development in the field of oncology helps in drug testing, making it more successful. This ensures widening of treatment options. Factors such as age, metabolism, sex etc are also taken into consideration while conducting the study. This helps scientists choose best options for individual patients.

The mice are studied over a period of time to gain results, even though the study is supposed to be prolonged, various new discoveries and science have made it easier and faster. This helps in minimizing of side-effects post treatment and other health implications by three folds.

Genetic research shows a progressive growth over the years, showing immense scope and employment options. Diseases are getting detected sooner and treatment delivered on time. This in turn saves a lot of time, cost, manpower and patient care excels automatically.